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Taste and Related Systems in Primates Including Humans
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The cortical processing of taste and related sensory inputs is being
investigated at the neuronal level in macaques to help understand the
operation of these cortical areas in humans. The primary taste cortex
of macaques in the rostral insula and adjoining frontal operculum
contains neurons tuned to different tastes including umami (Scott et
al., 1986; Yaxley et al., 1990; Baylis and Rolls, 1991; Rolls et al.,
1996b, 1998). Neurons in the macaque primary taste cortex respond
to the identity and intensity of taste, in that their responses are not
affected when taste reward is decreased to zero by feeding to satiety
(Rolls et al, 1988). Other neurons in the primary taste cortex
respond to somatosensory inputs by representing the viscosity of
what is in the mouth, oral fat texture, the temperature of what is in
the mouth, capsaicin (Verhagen et al., 2004), and tannic acid (astrin-
gency) (Critchley and Rolls, 1996a). Not only are these qualities
represented independently by different neurons, but other neurons
respond to combinations of these inputs (Verhagen et al., 2004). The
macaque primary taste cortex does not represent the smell or sight of
food (Verhagen et al., 2004).

The macaque orbitofrontal cortex contains the secondary taste
and olfactory cortices, in that different parts of it receive from the
primary taste cortex (Baylis ez al., 1995), and the primary olfactory
cortical areas. Neurons in the secondary taste cortex not only repre-
sent taste, but other neurons respond to somatosensory inputs by
representing the viscosity of what is in the mouth (Rolls ez al,
2003b), oral fat texture (Rolls ez al., 1999; Verhagen et al., 2003), the
temperature of what is in the mouth (Kadohisa et al., 2004), cap-
saicin (Kadohisa et al., 2004) and tannic acid (astringency) (Critchley
and Rolls, 1996a). Other neurons respond to combinations of these
inputs. The orbitofrontal cortex also contains neurons that respond
to olfactory stimuli and to the sight of food, and for many neurons
these olfactory and taste representations are learned by olfactory to
taste or visual to taste associative learning (Rolls and Baylis, 1994;
Rolls et al., 1996a; Critchley and Rolls, 1996b). Orbitofrontal cortex
neurons represent the reward value of what is in the mouth, in that
the neuronal responses to the taste, smell, and sight of food decrease
to zero as the monkey is fed to satiety (Rolls et al., 1989; Critchley
and Rolls, 1996¢). Further, orbitofrontal cortex neurons represent
sensory-specific reductions in their responses to the particular foods
that have been eaten to satiety, and thus implement sensory-specific
satiety (Rolls et al., 1999; Critchley and Rolls, 1996¢; Rolls, 1999,
2004).

In human functional neuroimaging studies, it has been shown that
activation of the orbitofrontal cortex (OFC) and adjoining anterior
cingulate cortex (ACC) by odours (O’Doherty et al., 2000) and by
liquid food (Kringelbach et al., 2003) is hunger-dependent, and
indeed the pleasantness of the food is correlated with the degree of
activation found. In both studies, it was shown that the modulation
is sensory-specific, so that sensory-specific satiety is implemented in
the human OFC. The viscosity of food is represented in the human
taste and non-taste insula, and in the orbitofrontal cortex (De
Araujo and Rolls, 2004). Fat in the mouth is detected by its texture,
and this is represented in the anterior cingulate and orbitofrontal
cortex (De Araujo and Rolls, 2004). The pleasantness of odours is

represented in the orbitofrontal cortex (Rolls et al., 2003a), and
flavour representations are formed by combining taste and olfactory
inputs in the orbitofrontal cortex (De Araujo et al., 2003b).

This primate neurophysiological and human functional neuro-
imaging evidence thus shows that the orbitofrontal cortex is involved
in decoding some primary reinforcers such as taste, odour, texture,
touch and temperature; in learning and reversing associations of
visual and other stimuli to these primary reinforcers; and in repre-
senting the pleasantness of food in a way that correlates directly with
whether food is eaten. The orbitofrontal cortex and connected areas
play key roles in representing the sensory qualities and affective
value of food, and thus in the control of eating (Rolls et al., 1990;
Rolls, 1997, 1999, 2000, 2001a,b, 2005; O’Doherty et al., 2001; Rolls
and Scott, 2003; Kringelbach and Rolls, 2004).
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